Search results for "Thin Film"

showing 10 items of 1200 documents

Characterization of Crystalline Structure and Morphology of Ga<sub>2</sub>O<sub>3</sub> Thin Film Grown by MOCVD Technique

2016

Growth of gallium oxide thin film was realized with MOCVD on (0001) sapphire substrate. Structural and compositional properties of thin film were studied employing trimethylgallium and water as precursors, carrier gases were H2 and N2. Obtained film is polycrystalline and predominantly consisted of (201) oriented β-Ga2O3. Sample exhibited blue luminescence which is attributed to oxygen vacancies. H2 gas proved to have beneficial effect on film quality and overall growth process.

Materials scienceMorphology (linguistics)Mechanical EngineeringAnalytical chemistrychemistry.chemical_element02 engineering and technologyCrystal structure010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesOxygen0104 chemical scienceschemistry.chemical_compoundchemistryMechanics of MaterialsGeneral Materials ScienceCrystalliteMetalorganic vapour phase epitaxyTrimethylgalliumThin film0210 nano-technologyLuminescenceKey Engineering Materials
researchProduct

Yttrium-doped hematite photoanodes for solar water splitting: Photoelectrochemical and electronic properties

2018

Abstract We investigate yttrium-doped hematite thin-film photoelectrochemical properties and find yttrium incorporation to amply improve the performance as a photoanode for water splitting under visible light. We used the spray pyrolysis method to prepare a set of yttrium doped Fe2-xYxO3 (x = 0, 0.05, 0.10, 0.15, 0.2) thin films (thickness below 500 nm) on glass and transparent conductive oxide coated glass slides. Using a substitutional homovalent (Y3+) dopant, the effect on functionality is rationalised as a combined effect on the electronic structure and small polaron mobility from the lattice structure, impurity levels, lattice stability and variance in hybridisation. The photoelectroch…

Materials scienceDopantProcess Chemistry and TechnologyDopingchemistry.chemical_element02 engineering and technologyYttriumHematite010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialschemistryChemical engineeringImpurityvisual_artMaterials ChemistryCeramics and Compositesvisual_art.visual_art_mediumWater splittingThin film0210 nano-technologyTransparent conducting filmCeramics International
researchProduct

Influence of semiconducting electrodes on properties of thin ferroelectric films

2005

The influence of semiconducting electrodes on the properties of thin ferroelectric films is considered within the framework of the phenomenological Ginzburg-Landau theory. The contribution of the electric field produced by charges in the electrodes allowing for the screening length of the carriers is included in the functional of the free energy and so in the Euler-Lagrange equation for the film's polarization. Application of the variational method to the solution of this equation allows the transformation of the free energy functional into a conventional type of free energy with renormalized coefficients. The obtained dependence of the coefficients on the film thickness, temperature, elect…

PhysicsCondensed Matter::Materials SciencePhase transitionCondensed matter physicsElectric fieldPhenomenological modelGinzburg–Landau theoryDielectricThin filmCondensed Matter PhysicsFerroelectricityElectronic Optical and Magnetic MaterialsEnergy functionalphysica status solidi (b)
researchProduct

MOCVD growth of CdO very thin films: Problems and ways of solution

2016

Abstract In this paper the growth of CdO by the MOCVD technique at atmospheric pressure has been studied in order to achieve very thin films of this material on r-sapphire substrates. The growth evolution of these films was discussed and the existence of a threshold thickness, below which island-shaped structures appear, was demonstrated. Some alternatives to reduce this threshold thickness have been proposed in the frame of the analysis of the crystal growth process. The morphology and structural properties of the films were analyzed by means of SEM and HRXRD. High-quality flat CdO samples were achieved with thicknesses up to 20 nm, which is five times thinner than the values previously re…

010302 applied physicsMaterials scienceAtmospheric pressureGeneral Physics and AstronomyNanotechnologyCrystal growth02 engineering and technologySurfaces and InterfacesGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesSurfaces Coatings and Films0103 physical sciencesMetalorganic vapour phase epitaxyThin filmComposite material0210 nano-technologyApplied Surface Science
researchProduct

Strain-induced magnetic anisotropies in Co films on Mo(110)

2004

Magnetic anisotropyMagnetizationMaterials scienceStrain (chemistry)chemistryCondensed matter physicsMolybdenumchemistry.chemical_elementThin filmCondensed Matter PhysicsAnisotropyCobaltElectronic Optical and Magnetic MaterialsPhysical Review B
researchProduct

Tailoring of highly porous SnO2 and SnO2-Pd thin films

2019

Abstract Tin oxide is a material that attracts attention due to variety of technological applications. The main parameters that influence its properties are morphology, crystalline structure and stoichiometry. Researchers try to develop nanostructured thin films with tunable parameters that would conform its technological applications. Herein, we report on the preparation and characterization of highly porous SnO2 and Pd-doped SnO2 thin films. These films were deposited in the form of nanorods with controllable geometry. Such morphology was achieved by utilizing glancing angle deposition (GLAD) with assisted magnetron sputtering. This arrangement allowed preparation of slanted pillars, zig-…

Materials sciencebusiness.industryAnnealing (metallurgy)chemistry.chemical_element02 engineering and technologySputter deposition010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsTin oxide01 natural sciences0104 chemical scienceschemistryX-ray photoelectron spectroscopyOptoelectronicsGeneral Materials ScienceNanorodThin film0210 nano-technologyHigh-resolution transmission electron microscopyTinbusinessMaterials Chemistry and Physics
researchProduct

Carbon Nanotubes: In-Situ Growth of Ultrathin Films of NiFe-LDHs: Towards a Hierarchical Synthesis of Bamboo-Like Carbon Nanotubes (Adv. Mater. Inter…

2014

In situBambooCarbon filmMaterials scienceMechanics of MaterialsCarbon nanofiberlawMechanical EngineeringNanotechnologyCarbon nanotubeThin filmlaw.inventionAdvanced Materials Interfaces
researchProduct

Study of the bandgap renormalization in Ga-doped ZnO films by means of optical absorption under high pressure and photoelectron spectroscopy

2008

Abstract In this paper we investigate the band gap renormalization in heavily Ga-doped ZnO thin films deposited by pulsed laser deposition on C -plane sapphire and mica substrates. Thin films were studied by ultraviolet photoelectron spectroscopy and also by optical measurements under high pressure. The Fermi-level shift, as obtained from ultraviolet photoelectron experiments, exhibits a relatively small and positive shift (about 0.3 eV) with respect to the valence band for increasing electron concentrations up to 1021 cm−3. The optical gap exhibits a much larger increase (0.6 eV) for the same concentration range. Absorption measurements under pressure show that the pressure coefficient of …

Materials scienceBand gapbusiness.industryDopingCondensed Matter PhysicsMolecular physicsPulsed laser depositionOpticsX-ray photoelectron spectroscopySapphireGeneral Materials ScienceElectrical and Electronic EngineeringThin filmbusinessAbsorption (electromagnetic radiation)Ultraviolet photoelectron spectroscopySuperlattices and Microstructures
researchProduct

When are thin films of metals metallic? Part III

1996

Abstract A large amount of experimental information has indicated that very thin films of metallic elements can exhibit nonmetallic behavior, even on metal substrates. These films undergo a gradual nonmetal to metal transition with increasing film density or thickness. The nonmetallic behavior can be related to electron localization due to strong electron-electron correlation in low dimensional systems, as indicated by the strong enhancement of electron effective mass. The evolution in the electronic structure associated with the nonmetal to metal transition bears a striking resemblance to the behavior observed for free metal clusters. Part I [1], outlined the general concepts of a nonmetal…

Phase transitionMaterials scienceMetal K-edgeMechanical EngineeringElectronic structureCondensed Matter PhysicsElectron localization functionMetalEffective mass (solid-state physics)NonmetalMechanics of MaterialsChemical physicsvisual_artvisual_art.visual_art_mediumGeneral Materials ScienceThin filmMaterials Science and Engineering: A
researchProduct

Monte Carlo Study of Critical Point Shifts in Thin Films

2000

We report preliminary results of Monte Carlo simulations of critical point shifts in thin slit-like capillaries. By making use of the isomorphism with an Ising model subject to bulk and surface fields and employing a multi-cluster update algorithm with ghost-spin term we obtain the coexistence curve and the behavior at the critical point for various film thicknesses D.

BinodalMaterials scienceCondensed matter physicsSurface fieldCritical point (thermodynamics)Monte Carlo methodIsing modelThin film
researchProduct